

EAD ONLINE CLASSES

Objective Book for

Electrical-JE

Electronics-JE

ITI-Electrician

Buy our Books at:- w

Exam Targeted:-

UPPCL-JE, SSC-JE RRB-JE PGCIL-DTDFCCIL-JE, ITI Etc.

LOCATION

P DEHRADUN CENTRE

EAD Educational Group, Pithuwalan kalan, Dehradun (UK)

PRAYAGRAJ CENTRE

EAD Educational Group, Horizon public school, Pandey Tower, Om gayatari nagar, Near shiv chowraha, Salori Prayagraj (UP)

Contact us:

9389976136

Download EAD Online Classes application on playstore

PUNJAB PUBLIC SERVICE COMMISSION

Competitive Examination (Feburary-2017) for Recruitment of Sub Divisional Engineers (Electrical) in the Department of Public Works, Government of Punjab.

READ INSTRUCTIONS BEFORE FILLING ANY DETAILS OR ATTEMPTING TO ANSWER THE QUESTIONS.

Candidate's Name	
Father's Name	
Date of Birth DD MM YYYY	Category Code* (*as given in the admit card)
OMR Response Sheet No.	
Roll No.	Booklet No.
Candidate's Signature (Please sign in the box)	F 14 5 5 - 4 15
INSTR	UCTIONS
The candidate shall NOT open this booklet till the time told to do so by the invigilation Staff. However, in the meantime, the candidate can read these instructions carefully and subsequently fill the appropriate columns given above in CAPITAL letters. The candidate may also fill the relevant columns (other than the columns related to marking responses to the questions) of the Optical Mark Reader(OMR) response sheet, supplied separately	are marked in correct manner and any adverse impact due to wrong marking of responses would be the responsibility of the respective candidate. The following are some of the examples of wrong marking of responses on the OMR response sheet.
2. Use only blue or black ball point pen to fill the relevant columns on this page. Use of fountain pen may leave smudges which may make the information given by the candidate here illegible. 3. The candidate shall be liable for any adverse effect if the information given above is wrong or illegible.	are advised to check the booklet to confirm that the booklet has complete number of pages, the pages printed correctly and there are no blank pages. In case there is any such error in the question paper booklet then the candidate should immediately.
4. Before attempting the paper, the candidate must fill all the columns given above on this page and sign at the appropriate place. 5. Each candidate is required to attempt 100 questions in 120 minutes, except for visually impaired candidates, who would be given 40 minutes extra, by marking correct responses on the OMR sheet which would be supplied separately to the candidates.	relevant column of the OMR. The candidate should request the Invigilation Staff to authenticate the change in serial number of question booklet by obtaining the initials of the Staff on the corrected serial number of the question booklet
6. The candidate must write the following on the OMRs sheet: (a)Serial number of OMR sheet supplied to him/her for marking the responses to the questions. (b)Serial number of the question booklet Failure to do so may lead to cancellation of candidature or any other action which the Commission may deem fit.	13. Each question shall carry three marks.
7. The candidate should darken the appropriate response to the question by completely darkening the appropriate circle/oval according to his/her choice of response i.e. a, b, c or d in the manner shown in the example below. a b c d	response sheet using blue or black ball point pen.
8. Partly darkening the circle/oval on the OMR response sheet of using other symbols such as tick mark or cross would not result in evaluation of the response as the OMR scanner can only interpret the answers by reading the darkened responses in the manner explained in preceding paragraph. Darkening more that one circle/oval as response to a question shall also be considered as wrong answer.	attempted by the candidate.

1. The switch in the circuit has been closed for a long time. It is opened at t=0. At t=0⁺, the current through the capacitor is:

- a) 0 A
- b) 1A
- c) 1.25 A
- d) 5 A
- Two heaters, each rated at 1000 W, 250 V each are connected in series across a 250 V, 50 Hz ac mains. The total power drawn from the supply would be _____ W.
 - a) 1000
 - b) 250
 - c) 500
 - d) 2000
- 3. For the circuit shown in the figure, the reading of the voltmeter is:

- a) 0 V
- b) 5 V
- c) 10 V
- d) -10 V
- 4. The Laplace transform F(s) is $F(s) = \frac{2(s+1)}{s(s+a)}$. The inverse f(t) as $t \to \infty$ has the value ½.

Then 'a' is given by:

- a) 8
- b) 4
- c) 2
- d) 1

- 5. What is the Z-transform of the signal $x[n] = \alpha^n u(n)$?
 - a) $\frac{1}{z-1}$
 - b) $\frac{1}{1-z}$
 - c) $\frac{z}{z-\alpha}$
 - d) $\frac{1}{z-a}$
- 6. Which of the following cannot be the Fourier series expansion of a periodic signal?
 - a) $x(t) = 2\cos t + 3\cos 3t$
 - b) $x(t) = 2\cos \pi t + 7\cos t$
 - c) $x(t) = \cos t + 0.5$
 - d) $x(t) = 2\cos 1.5\pi t + \sin 1.5\pi t$
- 7. The Fourier transform of a rectangular pulse is:
 - a) another rectangular pulse
 - b) triangular pulse
 - c) sinc function
 - d) impulse function
- 8. A second order system exhibits 100 % overshoot. Its damping co-efficient is:
 - a) equal to zero
 - b) equal to 1
 - .c) less than1
 - d) greater than1
- 9. The root loci of a system has three asymptotes; the systems can have:
 - a) five poles and two zeros
 - b) four poles and one zero
 - c) three poles
 - d) all of the above
- 10. The system with open loop transfer function $\frac{1}{s(1+s)}$ is:
 - a) type 2 and order 1 system
 - b) type 1 and order 1 system
 - c) type 0 and order 0 system
 - d) type 1 and order 2 system

- 11. Maxwell equation $\nabla \times \overline{E} = -\frac{\partial \overline{B}}{\partial t}$ is represented in integral form as:
 - a) $\oint \vec{E} \cdot d\vec{l} = -\frac{\partial}{\partial t} \oint \vec{B} \cdot d\vec{l}$
 - b) $\oint \overline{E} \cdot d\overline{l} = -\frac{\partial}{\partial t} \oint_{\overline{s}} \overline{B} \cdot d\overline{s}$
 - c) $\oint \overline{E} \times d\overline{l} = \frac{\partial}{\partial t} \oint \overline{B} \cdot d\overline{l}$
 - d) $\oint \overline{E} \times d\overline{l} = \frac{\partial}{\partial t} \oint_{s} \overline{B} \cdot d\overline{s}$
- 12. A parallel plate capacitor with air as dielectric medium has capacitance of 10 $\,\mu$ F. If the linear dimensions of the plates are doubled and the separation between them is also doubled, the value of capacitor would be:
 - a) ·10 μF
 - b) 20 µF
 - c) 5 µF
 - d) 40 µF
- 13. The force experienced by a current carrying conductor lying parallel to a magnetic field is:
 - a) zero
 - b) BII
 - c) $BIl \sin \theta$
 - d) $BIl \cos \theta$
- 14. Superconductivity is destroyed:
 - a) at high temperature
 - b) at high magnetic field
 - c) in presence of magnetic impurities
 - d) in all of the above cases
- 15. The primary function of a clamper circuit is to:
 - a) introduce a dc level into ac signal
 - b) suppress variations in signal voltage
 - raise positive half cycle of the signal
 - d) lower negative half cycle of the signal
- 16. An operational amplifier possesses:
 - a) very large input resistance and very large output resistance
 - b) very large input resistance and very small output resistance
 - c) very small input resistance and very small output resistance
 - d) very small input resistance and very large output resistance

- 17. NAND operation with x and y inputs is:
 - a) x+y
 - b) x+y
 - c) $x \times y$
 - d) (x+y)(x+y)
- 18. A Darlington emitter-follower circuit is sometimes used in the output stage of a TTL gate in order to:
 - a) increase its lou
 - b) reduce its IOH
 - c) increase its speed of operation
 - d) reduce power dissipation
- A 12-bit ADC is operating with a 1μs clock period and total conversion time is seen to be 14 μs. The ADC must be of:
 - a) flash type
 - b) counting type
 - c) integrating type
 - d) successive approximation type
- 20. A modulator is a device to:
 - a) separate two frequencies
 - b) impress the information on to a radio frequency carrier
 - c) Extract information from the carrier
 - d) Amplify the audio frequency signal
- 21. With the increase in transmission bandwidth, received signal power in AM and FM will respectively:
 - a) Increase, increase
 - b) Remain same, increase
 - c) Increase, remain same
 - d) Remain same, remain same
- 22. A bus organized processor consists of 15 registers. The number of selection lines in each multiplexer and in the destination decoder are respectively:
 - a) 2 and 4
 - b) 4 and 2
 - c) 4 and 4
 - d) 4 and 8
- 23. A microprocessor based system can perform many different functions, because:
 - a) its operation is controlled by software
 - b) it is digital system
 - c) it uses a RAM
 - d) it can be controlled by input and output devices

24.	In a 3-	phase power measurement by two wattmeter method the reading of one of the
		eter was zero. The power factor of the load must be:
	a)	unity
	, p)	0.5
	c)	0.866
	d)	. Zero
25.	Dynam	nometer type wattmeters are suitable for:
	a)	both ac & dc circuits
		only ac circuits
	- c)	only dc circuits
	d)	only high voltage ac circuits
26.	The n	rpose of the synchronising control in a CRO is to:
20.	The po	in pose of the synchronising control in a CRO is to:
	a)	focus the spot on the screen
		lock the display of signal
	c)	adjust the amplitude of display
	d)	control the intensity of the spot.
27.		ull load copper loss and iron loss of a transformer are 6400 W and 5000 W
	respec	tively. Th <mark>e copper loss and iron lo</mark> ss at half load will be, respectively:
	-	3200 W and 2500 W
	0.125	3200 and 5000 W
		1600 W and 1250 W
	· d)	1600 W and 5000 W
28.	What i	s the frequency of rotor current of a 50 Hz induction motor operating at 2% slip?
20.	vviiaci	s the frequency of fotor current of a 50 Hz induction motor operating at 2% slip?
	_,	
	a)	1 Hz
	b)	100 Hz
	c)	2 Hz
	d)	50 Hz
29.	Floatin	g neutral in a three phase supply is considered undesirable as it causes:
	a)	high voltage across the load
*	b)	low voltage across the load
	c)	unequal voltage across the load
	d)	none of the above
30.	Four id	entical alternators each rated for 20 MVA, 11 KV having a sub transient reactance of
	10% al	e working in parallel. The short circuit level at the bus bars is:
	-1	500 MVA
	a)	
	b)	400 MVA
	c)	125 MVA
	a)	.80 MVA
	Altra de la companya della companya della companya della companya de la companya della companya	P-5
		Hard C. H. (1997) 1997 19

.

In distance protection, the relay measures:

- a) negative sequence impedance of the line from relay upto the fault point
- b) positive sequence impedance of the line from relay upto the fault point
- c) zero sequence impedance of the line from relay upto the fault point
- d) negative, positive and zero sequence impedance of the line from relay upto the fault point
- The output voltage of a zener diode rated as $12 \text{ V} \pm 10\%$ tolerance is: 32.
 - a) 12.2 to 11.8 V
 - b) 13.2 to 10.8 V
 - c) only 12 V
 - d) none of these
- The effect of source inductance on the performance of 1-Ø and 3-Ø full converter is to: 33.
 - a) reduce ripples in the load current
 - b) make the current continuous
 - c) reduce output voltage
 - d) increase the output voltage
- For the circuit shown in the Figure, the steady voltage drop across the capacitor C is : 34.

- a) $V(r_1) / (r_1 + r_2)$
- b) V(r2) / (r1+r2)
- c) $V(r_1+r_2)/r_1$
- d) $V(r_1+r_2)/(r_1+r_2+r_3)$
- In a series R-L circuit, the value of resistance is 1000 ohm and the applied voltage is $v(t) = 150\sqrt{2} \sin 500t$ V. If the RMS value of voltage across the resistor is 120 V, what is the value of inductance L?
 - a) 0.5 H
 - b) 0.6 H
 - c) 1.0 H
 - d) 1.5 H

- A rectangular current pulse of duration T and magnitude I has the Laplace transform:

 - b) $\frac{Ie^{-Ts}}{s}$ c) $\frac{Ie^{Ts}}{s}$ d) $\frac{I(1-e^{-Ts})}{s}$
- The open loop transfer function of a unity feedback control system is

$$G(s) = \frac{K}{s(s+1)(s+5)}$$

What is the value of K for its stable operation?

- a) 0<K<5 only
- b) 0<K<6 only
- c) 1<K<5 only
- d) 0<K<30 only
- Consider the following equation $2s^4 + s^3 + 3s^2 + 5s + 10 = 0$. How many roots does this equation have in the right half of the s-plane?
 - a) one
 - b) two
 - c) three
 - d) zero
- A parallel plate capacitor of 5 pF has a charge of 0.1 μ C on its plates, what is the energy 39. stored in the capacitor?
 - a) 1 mJ
 - b) 1 山
 - c) 1 nJ
 - d) 1 pJ
- 40. The conductance of electrical circuit is analogous in magnetic circuit to:
 - a) flux
 - b) reluctance
 - c) permeance
 - d) relative permeability

 41. The hysteresis loop for the material of the core of a transformer should be: a) Short and narrow b) Tall and narrow c) Short and wide d) Tall and narrow c) Short and wide 42. A half-wave rectifier having a resistance load of 1 kΩ rectifies an ac voltage of 325 V peak value and the diode has a forward resistance of 100 Ω. What is the RMS value of current? a) 295.4 mA b) 94.0 mA c) 147.7 mA d) 208.0 mA 43. A single phase diode bridge rectifier supplies a highly inductive load. The load current can be assumed to be ripple free. The ac supply side current waveform will be: a) sinusoidal b) constant dc c) square d) triangular 44. A non-inverting amplifier has input resistance R₁= 100 Ω and feedback resistance R₁=10 kΩ. Its gain value is: a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel d) Fading channel 				
b) Tall and narrow c) Short and wide d) Tall and wide 42. A half-wave rectifier having a resistance load of 1 kΩ rectifies an ac voltage of 325 V peak value and the dlode has a forward resistance of 100 Ω. What is the RMS value of current? a) 295.4 mA b) 94.0 mA c) 147.7 mA d) 205.0 mA 43. A single phase diode bridge rectifier supplies a highly inductive load. The load current can be assumed to be ripple free. The ac supply side current waveform will be: a) sinusoidal b) constant dc c) square d) triangular 44. A non-inverting amplifier has input resistance R _i = 100 Ω and feedback resistance R _i =10 kΩ. Its gain value is: a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel	41.	The hy	ysteresis loop for the material of the core of a transformer should be:	
b) Tall and narrow c) Short and wide d) Tall and wide 42. A half-wave rectifier having a resistance load of 1 kΩ rectifies an ac voltage of 325 V peak value and the dlode has a forward resistance of 100 Ω. What is the RMS value of current? a) 295.4 mA b) 94.0 mA c) 147.7 mA d) 205.0 mA 43. A single phase diode bridge rectifier supplies a highly inductive load. The load current can be assumed to be ripple free. The ac supply side current waveform will be: a) sinusoidal b) constant dc c) square d) triangular 44. A non-inverting amplifier has input resistance R _i = 100 Ω and feedback resistance R _i =10 kΩ. Its gain value is: a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel		a)	Short and narrow	
 d) Tall and wide 42. A half-wave rectifier having a resistance load of 1 kΩ rectifies an ac voltage of 325 V peak value and the dlode has a forward resistance of 100 Ω. What is the RMS value of current? a) 295.4 mA b) 94.0 mA c) 147.7 mA d) 208.0 mA 43. A single phase diode bridge rectifier supplies a highly inductive load. The load current can be assumed to be ripple free. The ac supply side current waveform will be: a) sinusoidal b) constant dc c) square d) triangular 44. A non-inverting amplifier has input resistance R₁= 100 Ω and feedback resistance R₁=10 kΩ. Its gain value is: a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or an EX-NOR d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel 		- 47.50		
 d) Tall and wide 42. A half-wave rectifier having a resistance load of 1 kΩ rectifies an ac voltage of 325 V peak value and the dlode has a forward resistance of 100 Ω. What is the RMS value of current? a) 295.4 mA b) 94.0 mA c) 147.7 mA d) 208.0 mA 43. A single phase dlode bridge rectifier supplies a highly inductive load. The load current can be assumed to be ripple free. The ac supply side current waveform will be: a) sinusoidal b) constant dc c) square d) triangular 44. A non-inverting amplifier has input resistance R₁= 100 Ω and feedback resistance R₁=10 kΩ. Its gain value is: a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel 				
value and the diode has a forward resistance of 100 Ω. What is the RMS value of current? a) 295.4 mA b) 94.0 mA c) 147.7 mA d) 208.0 mA 43. A single phase diode bridge rectifier supplies a highly inductive load. The load current canbe assumed to be ripple free. The ac supply side current waveform will be: a) sinusoidal b) constant dc c) square d) triangular 44. A non-inverting amplifier has input resistance R₁= 100 Ω and feedback resistance R₁=10 kΩ. Its gain value is: a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel		13000		
 b) 94.0 mA c) 147.7 mA d) 208.0 mA 43. A single phase diode bridge rectifier supplies a highly inductive load. The load current can be assumed to be ripple free. The ac supply side current waveform will be: a) sinusoidal b) constant dc c) square d) triangular 44. A non-inverting amplifier has input resistance R ₁ = 100 Ω and feedback resistance R _i =10 kΩ. Its gain value is: a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel	42.	A half-value a	-wave rectifier having a resistance load of 1 k Ω rectifies an ac voltage of and the diode has a forward resistance of 100 Ω . What is the RMS value	325 V peak of current?
 c) 147.7 mA d) 208.0 mA 43. A single phase diode bridge rectifier supplies a highly inductive load. The load current can be assumed to be ripple free. The ac supply side current waveform will be: a) sinusoidal b) constant dc c) square d) triangular 44. A non-inverting amplifier has input resistance R₁= 100 Ω and feedback resistance R_r=10 kΩ. Its gain value is: a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel 		a)	295.4 mA	
 c) 147.7 mA d) 208.0 mA 43. A single phase diode bridge rectifier supplies a highly inductive load. The load current can be assumed to be ripple free. The ac supply side current waveform will be: a) sinusoidal b) constant dc c) square d) triangular 44. A non-inverting amplifier has input resistance R₁= 100 Ω and feedback resistance R_f=10 kΩ. Its gain value is: a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel 				
 d) 208.0 mA 43. A single phase diode bridge rectifier supplies a highly inductive load. The load current can be assumed to be ripple free. The ac supply side current waveform will be: a) sinusoidal b) constant dc c) square d) triangular 44. A non-inverting amplifier has input resistance R₁= 100 Ω and feedback resistance R₂=10 kΩ. Its gain value is: a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel 				
be assumed to be ripple free. The ac supply side current waveform will be: a) sinusoidal b) constant dc c) square d) triangular 44. A non-inverting amplifier has input resistance R ₂ = 100 Ω and feedback resistance R ₄ =10 kΩ. Its gain value is: a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel				
 a) sinusoidal b) constant dc c) square d) triangular 44. A non-inverting amplifier has input resistance R_i= 100 Ω and feedback resistance R_i=10 kΩ. Its gain value is: a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel 	43.	A single	le phase diode bridge rectifier supplies a highly inductive load. The load	current can.
b) constant dc c) square d) triangular 44. A non-inverting amplifier has input resistance R ₁ = 100 Ω and feedback resistance R _f =10 kΩ. Its gain value is: a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel				
c) square d) triangular 44. A non-inverting amplifier has input resistance R ₁ = 100 Ω and feedback resistance R _f =10 kΩ. Its gain value is: a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel				
 d) triangular 44. A non-inverting amplifier has input resistance R₁= 100 Ω and feedback resistance R_i=10 kΩ. Its gain value is: a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel 				
 44. A non-inverting amplifier has input resistance R₁= 100 Ω and feedback resistance R₁=10 kΩ. Its gain value is: a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel 				
a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel		d)	triangular	
a) 10 b) 101 c) -100 d) -200 45. If the output of a logic gate is "1" when all its inputs are logic "0", the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel	44.	A non-	-inverting amplifier has input resistance R_1 = 100 Ω and feedback resista	nce R _f =10 kΩ.
b) 101 c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel		Its gair	n value is:	
c) -100 d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel		a)	10	
d) -200 45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel		b)	101	
45. If the output of a logic gate is '1' when all its inputs are logic '0', the gate is either: a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel		c)	-100	
a) a NAND or a NOR b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel		d)	-200	
b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel	45.	If the c	output of a logic gate is '1' when all its inputs are logic '0', the gate is eit	ther:
b) an AND or an EX-NOR c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel		a)	a NAND or a NOR	
c) an OR or a NAND d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel				
d) an EX-OR or an EX-NOR 46. Which one of the following logic families can be operated using a supply voltage from 3 V to 15 V? a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel				
a) TTL b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel				
b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel	46.			age from 3 V to
b) ECL c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel				
c) PMOS d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel		10000		
d) CMOS 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel				
 47. A satellite channel can be fairly accurately modelled as a: a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel 		OI TO THE PARTY		
a) Random delay channel b) Panic button channel c) Additive white Gaussian noise channel		. d)) CMOS	. 10
b) Panic button channel c) Additive white Gaussian noise channel	47.	A sate	ellite channel can be fairly accurately modelled as a:	
b) Panic button channel c) Additive white Gaussian noise channel		a)) Random delay channel	
d) Fading channel		c)	Additive white Gaussian noise channel	
		d)) Fading channel	

48.	Which	one is the indirect addressing mode in the following instructions?
	. a)	LXIH 2050 H
		MOV A, B
	0.70	LDAX B
		LDA 2050 H
49.		sured value of capacitor is 100 μF . The true value of the capacitor is 110 μF . The tage rélative error is:
	al	9.99%
		9.09%
		10.0%
		4.76%
	۵,	
50.	To mea	asure low resistances, four terminals approach is preferred because it:
		eliminates the effect of thermoelectric emf
		minimises the effects of parasitic capacitances
	. c)	reduces the effects of parasitic inductances
	d)	eliminates the effects of lead and contact resistances
51.	In perf	orming short circuit test on a transformer, usually:
	a)	high voltage winding is short circuited
	b)	· low voltage winding is short circuited
		both windings are short circuited
		none of the winding is short circuited
52.	The po	ower factor of an induction motor operating at full load is likely to be:
	a)	
		0.85 lead
	c)	0.85 lag
	d)	0.4 lag in communication than the second section of the second se
53.	Xs=0.4	rameters of a transposed overhead transmission line are given as: self reactance ohm/km and mutual reactance Xm=0.1 ohm/km. The positive and zero sequence
	reactai	nce respectively, in ohm/km are:
	a)	0.3, 0.2
	b)	0.5, 0.2
	c)	0.5, 0.6
	d)	0.3, 0.6
54.	and X	e line to ground fault occurs on an unloaded generator in phase 'a'. If $X_1=X_2=0.25$ pu $_2=0.15$ pu, reactance connected in the neutral Xn=0.05 pu and the initial prefault e is 1.0 pu, then the magnitude of the fault current will be:
	· a)	3.75 pu
1	b)	1.54 pu
	c)	1.43 pu
	d)	1.25 pu
	N. C.	

- 55. For a transmission line Vs = AVr + B Ir, Is = C Vr + D Ir then Ir equals:
 - a) -CVs+Als
 - b) DVs+Als
 - c) DVs-BIs
 - d) AVs+DIs
- 56. The circuit in figure shows a full-wave rectifier. The input voltage is 230V (rms) single phase ac. The peak reverse voltage across the diode D₁ and D₂ is:
 - a) 100V2
 - b) 100
 - c) 50 V2
 - d) 50

- 57. Piranha cleaning of a silicon wafer uses:
 - a) H₂SO₄ and KOH.
 - b) H₂SO₄ and H₂O₂.
 - ć) KOH and NaOH.
 - d) H₂O₂ and KOH.
- 58. Hydrogen passivation process is used for amorphous silicon thin films:
 - a) To passivate silicon dangling bonds.
 - b) To remove hydrogen from the Si-H bonds.
 - c) To remove contaminations from the film.
 - d) To break Si-Si bonds in the films.
- 59. In the figure shown, A₁, A₂ and A₃ are ideal ammeters. If A₁ and A₃ read 5 and 13 A respectively. Reading of A₂ will be

- a) 8 A
- b) 12 A
- c) 1
- d) Indeterminate unless the actual value of $\,$ R,C and ω are specified

- 60. A series R-L-C circuit has a resistance of 47 ohm, inductance of 2 H and capacitance of 2 μ F. The supply voltage to the circuit is $v(t) = 10\sqrt{2}\sin 500t$ V. The RMS value of current through the circuit at resonance is______
 - a) 0.833 A
 - b) 0.212 A
 - c) 0.196 A
 - d) 0.000 A
- 61. Two wattmeters connected to measure the power in 3 phase balanced delta connected load read W₁=12 kW and W₂=15 kW. If same load be connected in star the wattmeter would read:
 - a) W₁= 8.66 kW W₂= 6.93 kW
 - b) W₁= 6.96 kW W₂= 8.66 kW
 - c) W₁= 5 kW W₂= 4 kW
 - d) $W_1 = 4 kW W_2 = 5 kW$
- 62. What is the transfer function of a system whose impulse response is $e^{-3t} \sin 2t$?
 - a) $\frac{13}{s^2 + 6s + 13}$
 - b) $\frac{1}{s^2 + 6s + 13}$
 - c) $\frac{2}{s^2 + 6s + 13}$
 - d) $\frac{2}{s^2 + 3s + 4}$
- 63. A closed loop system is stable for:
 - a) Gain margin= 14 dB and Phase margin = 70°
 - b) Gain margin= -14 dB and Phase margin = 70°
 - c) Gain margin= 14 dB and Phase margin = -70°
 - d) Gain margin= -14 dB and Phase margin = -70°
- 64. If the characteristic equation of a closed-loop system is $s^2 + 2s + 2 = 0$, then the system is:
 - a) over damped
 - b) critically damped
 - c) under damped
 - d) undamped
- 65 A control system has

$$G(s)H(s) = \frac{K(s+1)}{s(s+3)(s+4)}$$

Root locus of the system can lie on the real axis

- a) between s = -1 and s = -3
- b) between s=0 and s=-4
- c) between s = -3 and s = -4
- d) towards left of s = -4

- 66. In a parallel plate capacitor, a dielectric slab is introduced. Then the:
 - a) potential difference between the plates will decrease
 - b) electric intensity will decrease
 - c) capacitance will increase
 - d) all of the above
- 67. Which one of the following is not a Maxwell's equation?

a)
$$\nabla \times H = (\sigma + j\omega \varepsilon)E$$

b)
$$F = Q(E + v \times B)$$

c)
$$\oint_C H \cdot ds = \int_S J \cdot ds + \int_S \frac{\partial D}{\partial t} \cdot ds$$

d)
$$\oint_S B \cdot ds = 0$$

- 68. Which of the following has zero temperature coefficient of resistance?
 - a) Manganin
 - b) Nichrome
 - c) Carbon
 - d) Aluminium
- 69. The temperature coefficient of resistance of an insulator is:
 - a) Positive and independent of temperature
 - b) Negative and independent of temperature
 - c) Negative and dependent of temperature
 - d) Positive and dependent of temperature
- 70. In a bridge ac to dc converter using P-N diodes, if the input voltage is Vsin ωt, what is the peak inverse voltage across any diode?
 - a) V
 - b) 2V
 - c) V/2
 - d) V/v2
- 71. The zero level detector is one application of a:
 - a) differentiator
 - b) integrator
 - c) summing amplifier
 - d) comparator
- 72. The logic family which has minimum power dissipation is:
 - a) TTL
 - b) 12L
 - c) ECL
 - d) CMOS

73.	A puls	e train can be delayed by a finite number of clock periods using:
	. a)	a serial-in serial-out shift register
	100000	a serial-in parallel-out shift register
		a parallel-in serial out shift register
		a parallel-in parallel-out shift register
74.	A shift	register with the serial output connected back to the serial input is a:
		feedback shift register
		shift register counter
	- A - C - C - C - C - C - C - C - C - C	universal shift register
	d)	serial to parallel converter
75.	An ins	truction used to set the carrry Flag in a computer can be classified as:
	a)	data transfer
	b)	arithmetic
	c)	logical
	d)	program control
76.	The pr	inciple of operation of LVDT is based on variation of:
		self inductance
		mutual inductance
	- 10	reluctance
		permeance
77.	Maxim second	turn transient currents flow through a transformer winding when it is switched on with dary circuited and the input voltage wave is passing through the value. open, zero
	b)	
	c)	open, maximum
	d)	short, maximum
78.	In a Di reversa	C machine, which loss increases rapidly with the increase in frequency of magnetic als?
	a)	Copper loss
	b)	Hysteresis loss
	c)	Eddy current loss
	d)	Mechanical loss
79.	The im	pedance value of a generator is 0.2 pu on a base value of 11 kV, 50 MVA. The
		ance value for a base value of 22 kV, 150 MVA is:
	a)	0.15 pu
	b)	0.2 pu
	· c)	0.3 pu
	d)	0.4 pu
		그리는 사람들은 살이 아니는

80.	The ca	apacitance and in	ductance p.u. l	ength of a line	operating at	110 kV are	0.01µF and
	2mH.1	The surge impeda	nce loading of t	he line is:			
		40 MVA					
		30 MVA 27 MVA					
		None of the abo	ove				
81.	A sola	r cell has a currer	nt density 35 m	A/cm² and a vo	Itage of 0.5 V	. What is the	e efficiency of
	the ce	ll when exposed t	o a sun light int	ensity 100 mW/	cm ² ?		
	a)	16.5%					
	b)	17.5%					
	c)	18.5%					
	d)	6.5 %				To though	
82.	A "sun	n" output in a half	fadder can be re	ealized by using	a single two ir	put gate wh	ich should be:
	a)	Exclusive OR gate	e				
	b)	NOR gate					
	c)	AND gate					
	d)	OR gate					
83.	The ur	nit of the mobility	of an electron i	n a conductor is			
	a)	cm²/V-sec					為特殊主義
	b)	cm/V-sec					
	c)	cm ² /V					
	d)	cm²/sec					
		ectrostatic potent		(- 24/.11/2 Valer	in a rectangui	lar co-ordina	te system. The
84.	An ele	ectrostatic potent	ial is given by p	y = 2x(y) voits	in a rectangu	iai co-oraina	te system. The
	magn	itude of the electr	ric field at X = 1	m, y = 1 m is.			
		5 V/m					
		2 V/m					
		2.236 V/m					
	d)	1.414 V/m					
85	When	a firing angle of	a single phase	fully controlled	rectifier feedi	ng constant l	DC current into
	the lo	ad is 30°. What is	the displaceme	ent factor of the	rectifier?		
			THE RELL OF SHIP				
	a)	1		100			
		0.5					
		1.732					
	d)					1 - 1	
	-/						
				P-14			

....

36.		is the maximum output voltage of a 3-phase bridge rectifier supplied with line voltage	of
	440 V		
	-1	528 V	
		396 V	
	c)	594 V	
	d)	616 V	
	uj	016 V	
37.	A ha	If wave rectifier has an input voltage of 240 V RMS. If the step down transformer	
	has a	turns ratio of 8:1, what is the peak load voltage? Neglect diode drop.	
) 27.5 V) 86.5 V	
) 30.0 V	
) 42.5 V	
	Sec.		
38.		oolean expression X (P,Q,R) = π (0,5) is to be realised using only two 2-input gates. Which	h
	are th	ese gates?	
	a)	AND and OR	
	b)	NAND and OR	
	c)	AND and XOR	
	d)	OR and XOR	
39.	The fi	gure of merit of a logic family is given by:	
	a)	gain x bandwidth.	
	b)	propagation delay time x power dissipation.	
	c)	fan-out x propagation delay time.	
	d)	noise margin x power dissipation	
90.	In a co	ommon emitter amplifier, the unbypassed emitter resistance provides:	
	a)	voltage-shunt feedback	
	b)	current-series feedback	
	(c)	negative-voltage feedback	
	d)	positive current-feedback	
1.	In a ur	niform electric field, the field lines at equipotential surfaces:	
	a)	are parallel to one another	
	b)	Intersect at 45°.	
	c)	Intersect at 30°	
	d)	are orthogonal	
		P-15	

.

92.	A synd	hronous motor when operating in overexcited mod	de and connected across a load is u
	for:		
	-1	power factor improvement	
		efficiency improvement	
	-	torque improvement	
		current harmonic reduction	
93.		erate a DC shunt motor at a speed above the rated	speed, which of the following meth-
	is pref	erred?	
	- WEETER	armature resistance control	
		flux weakening control	
		supply voltage control	
	d)	none of these methods	
94.	A buc	k regulator has an input voltage of 12 V and the re-	quired output voltage of 5 V. The d
		of the regulator is:	
	a)	5/12	
	b)	12/5	
	c)	5/2	
	d)	6	
95.	Minim	num number of JK flip-flops needed to construct a B	CD counter is:
	a).		
	b)	3	
	c)	4	
	d)	5	
96.	A fund	ction in the time domain has half-wave symmetry.	The Fourier series of the function
		de up of harmonics containing:	
	a)	odd cosine terms	
	b)	odd sine terms	
	_ c)	odd cosine and sine terms	
	d)	none of these	
97.	Let X(z) = 1/(1 - z^{-3}) be the z-transform of a causal signa	x[n]. Then the values of x[2] and
	are:		
	a)	0 and 0	
	b)	0 and 1	
	c)	1 and 0	

- 98. Given two continuous time signals $x(t) = e^{-t}$ and $y(t) = e^{-2t}$ which exist for t > 0. The convolution $z(t) = x(t)^*y(t)$ is:
 - a) e-t e-2t
 - b) e^{-3t}
 - c) et
 - d) e-t +e-2t
- 99. An op-amp has an open-loop gain of 10⁵ and an open loop upper cut-off frequency of 10 Hz. If this op-amp is connected as an amplifier with a closed loop gain of 100, then the new upper cut-off frequency is:
 - a) 10 Hz
 - b) 100 Hz
 - c) 10 kHz
 - d) 100 kHz
- 100. The highest frequency stability is achieved by using an oscillator of the type:
 - a) Colpitts
 - b) Crystal controlled
 - c) Hartley
 - d) RC oscillator
